Frames of Periodic Shift-Invariant Spaces ${ }^{1}$

Di-Rong Chen
Department of Applied Mathematics, Beijing University of Aeronautics and Astronautics, Beijing 100083, P.R. China
Communicated by Amos Ron

Received May 21, 1999; accepted in revised form March 31, 2000; published online November 28, 2000

This note studies Bessel sequences and frames of shift-invariant spaces generated by a countable set of periodic functions. We give characterizations under which the set of translations of the countable set is a Bessel sequence or a frame in terms of spectral decompositions of some self-adjoint operators. © 2000 Academic Press
Key Words: Bessel sequence; frame; shift-invariant space.

1. INTRODUCTION

Let $L_{2}\left([0,1]^{s}\right)$ denote the Hilbert space of all squared integrable functions on $[0,1]^{s}$ which are \mathbb{Z}^{s}-period. For an $s \times s$ integer and invertible matrix M, we define the operators of translation on $L_{2}\left([0,1]^{s}\right)$ by

$$
T^{\alpha} f=f\left(\cdot-M^{-1} \alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

A shift invariant space \mathscr{S} is a closed subspace of $L_{2}\left([0,1]^{s}\right)$ if it satisfies

$$
f \in \mathscr{S} \Rightarrow T^{\alpha} f \in \mathscr{S} \quad \forall f \in \mathscr{S}, \alpha \in \mathbb{Z}^{s} .
$$

It is known that the shift invariant spaces play an important role in multiresolution analysis and wavelets of $L_{2}\left([0,1]^{s}\right)$.

Let E be a complete set of representatives of coset of $\mathbb{Z}^{s} / M \mathbb{Z}^{s}$, and let Γ be a complete set of representatives of coset of $\mathbb{Z}^{s} / M^{T} \mathbb{Z}^{s}$. Clearly, $\# E=\# \Gamma=m:=|\operatorname{det} M|$. Without loss of generality we assume $0 \in E$ and $0 \in \Gamma$. Given a set $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subseteq L_{2}\left([0,1]^{s}\right)$, we denote by $\mathscr{S}_{M}(\Phi)$ the closure in $L_{2}\left([0,1]^{s}\right)$ of the space

$$
\left\{f: f=\sum_{\varepsilon \in E} \sum_{k \in \mathbb{N}} c_{\varepsilon, k} T^{\varepsilon} \phi_{k}\right\},
$$

[^0]where all $c_{\varepsilon, k}$ but finitely many are zero. We are interested in characterizing the Bessel sequence property and the frame property of
$$
E_{\Phi}:=\left\{T^{\varepsilon} \phi_{k}: \varepsilon \in E, k \in \mathbb{N}\right\}
$$
for $\mathscr{S}_{M}(\Phi)$.
A sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ in a Hilbert space X is called a Bessel sequence for X if there is a constant $\Lambda>0$ such that, for any $x \in X$,
$$
\sum_{k \in \mathbb{N}}\left|\left\langle x, x_{k}\right\rangle_{X}\right|^{2} \leqslant \Lambda\|x\|_{X}^{2} .
$$

The bound of a Bessel sequence is the smallest number $\Lambda>0$ that can be used in the above inequality.

We note that any subsequence of a Bessel sequence is also a Bessel sequence for the closed subspace it spans.

A sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ is a frame for X if there are constants $\Lambda>0$ and $\lambda>0$ satisfying

$$
\lambda\|x\|_{X}^{2} \leqslant \sum_{k \in \mathbb{N}}\left|\left\langle x, x_{k}\right\rangle_{X}\right|^{2} \leqslant \Lambda\|x\|_{X}^{2} \quad \forall x \in X .
$$

The frame bounds are the largest λ and the smallest Λ that can be used in the above inequalities. A frame with bounds λ and Λ is tight if $\lambda=\Lambda$.

For a set Φ of finitely many functions of $L_{2}\left(\mathbb{R}^{s}\right)$, we gave in [1] a simple characterization for the \mathbb{Z}^{s}-translations $\left\{\phi(\cdot-\alpha): \alpha \in \mathbb{Z}^{s}, \phi \in \Phi\right\}$ to be a frame for the closed space they span. Independently, Ron and Shen [3] established a more complete characterization for a countable set as well as a finite set. Moreover, the notion of dual Gramian matrix was introduced in [3]. A characterization for $\left\{\phi(\cdot-\alpha): \alpha \in \mathbb{Z}^{s}, \phi \in \Phi\right\}$ being a frame for $L_{2}\left(\mathbb{R}^{s}\right)$ was given in terms of some dual Gramian matrices ([3]). It is the purpose of this note to find the analog of these results for periodic case. To this end, we make use of spectral decompositions of self-adjoint operators.

2. CHARACTERIZATIONS OF FRAMES IN $L_{2}\left([0,1]^{s}\right)$

The bracket product of two functions $f, g \in L_{2}\left(\mathbb{R}^{s}\right)$ was introduced in [2]. Similarly, for two functions f and g in $L_{2}\left([0,1]^{s}\right)$, we define the (periodic) bracket product of f with g by

$$
[f, g](\gamma)=\sum_{\beta \in \mathbb{Z}^{s}} \hat{f}\left(\gamma+M^{T} \beta\right) \overline{\hat{g}\left(\gamma+M^{T} \beta\right)}, \quad \gamma \in \Gamma
$$

where \hat{f} is the Fourier transform of f,

$$
\hat{f}(\alpha)=\int_{[0,1]^{s}} f(x) e^{-2 \pi \alpha \cdot x} d x, \quad \alpha \in \mathbb{Z}^{s}
$$

Using the unitarity of matrix

$$
\frac{1}{\sqrt{m}}\left(e^{2 \pi M^{-1}{ }_{\varepsilon \cdot \gamma}}\right)_{\varepsilon \in E, \gamma \in \Gamma}
$$

and Parseval's identity, it is easy to prove the following equalities

$$
\begin{equation*}
\|f\|^{2}=\sum_{\gamma \in \Gamma}[f, f](\gamma) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\varepsilon \in E}\left|\left\langle f, T^{\varepsilon} g\right\rangle\right|^{2}=m \sum_{\gamma \in \Gamma}|[f, g](\gamma)|^{2} . \tag{2}
\end{equation*}
$$

Lemma 1. Let E_{Φ} be a Bessel sequence for $\mathscr{S}_{M}(\Phi)$ with bound Λ, where $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}}$. Suppose that $X(\gamma):=\left\{x_{k}(\gamma)\right\}_{k \in \mathbb{N}} \in \ell_{2}(\mathbb{N})$ for any $\gamma \in \Gamma$. Then for any $\gamma \in \Gamma$ and $\beta \in \mathbb{Z}^{s}$ the series

$$
\begin{equation*}
\sum_{k \in \mathbb{N}} x_{k}(\gamma) \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) \tag{3}
\end{equation*}
$$

converges.
Moreover, let $y(\alpha)$ be the sum of the series in (3), where $\beta \in \mathbb{Z}^{s}, \gamma \in \Gamma$ and $\alpha \in \mathbb{Z}^{s}$ satisfy $\alpha=\gamma+M^{T} \beta$. Then there exists a function $f \in \mathscr{S}_{M}(\Phi)$ satisfying

$$
\begin{equation*}
\hat{f}(\alpha)=y(\alpha), \quad \alpha \in \mathbb{Z}^{s}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|^{2} \leqslant \Lambda m^{-1} \sum_{\gamma \in \Gamma} \sum_{k \in \mathbb{N}}\left|x_{k}(\gamma)\right|^{2} . \tag{5}
\end{equation*}
$$

Proof. For any n, let $\Phi_{n}:=\left\{\phi_{k}\right\}_{k=1}^{n}$. Being a subsequence of $E_{\Phi}, E_{\Phi_{n}}$ is a Bessel sequence for $\mathscr{S}_{N}\left(\Phi_{n}\right)$ with bound $\leqslant \Lambda$. For any $n \in \mathbb{N}$ and $\gamma \in \Gamma$, let $G_{n}(\gamma)$ be the matrix $\left(\left[\phi_{j}, \phi_{k}\right](\gamma)\right)_{k, j=1}^{n}$. Clearly, $G_{n}(\gamma)$ is a self-adjoint matrix. We use $\left\|G_{n}(\gamma)\right\|$ to denote the largest eigenvalue of $G_{n}(\gamma)$. We claim that

$$
\begin{equation*}
\left\|G_{n}(\gamma)\right\| \leqslant \Lambda m^{-1} \quad \forall \gamma \in \Gamma, \quad n \in \mathbb{N} . \tag{6}
\end{equation*}
$$

Indeed, the proof of (6) is similar to that of its analogue in nonperiodic case ([1] and [3]). However, for the reader's convenience, we include the argument. We note that a function $f \in \mathscr{S}_{M}\left(\Phi_{n}\right)$ if and only if there are m vectors $x(\gamma):=\left(x_{1}(\gamma), x_{2}(\gamma), \ldots, x_{n}(\gamma)\right)^{T} \in \mathbb{C}^{n}, \gamma \in \Gamma$, such that

$$
\hat{f}\left(\gamma+M^{T} \beta\right)=\sum_{k=1}^{n} x_{k}(\gamma) \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right), \quad \gamma \in \Gamma, \quad \beta \in \mathbb{Z}^{s} .
$$

Substituting the above expression into (1) and (2) gives us

$$
\|f\|^{2}=\sum_{\gamma \in \Gamma} \sum_{j, k=1}^{n} x_{j}(\gamma) G_{n}(\gamma) \overline{x_{k}(\gamma)}=\sum_{\gamma \in \Gamma}\left\langle G_{n}(\gamma) x(\gamma), x(\gamma)\right\rangle
$$

and

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{\varepsilon \in E}\left|\left\langle f, T^{\varepsilon} \phi_{k}\right\rangle\right|^{2} & =m \sum_{k=1}^{n} \sum_{\gamma \in \Gamma}\left|\sum_{j=1}^{n}\left[\phi_{j}, \phi_{k}\right] x_{j}(\gamma)\right|^{2} \\
& =m \sum_{\gamma \in \Gamma}\left\langle\left(G_{n}(\gamma)\right)^{2} x(\gamma), x(\gamma)\right\rangle
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product of two vector in \mathbb{C}^{n}. From these equalities we see that $E_{\Phi_{n}}$ is a Bessel sequence with bound Λ is equivalent to

$$
x^{*}\left(G_{n}(\gamma)\right)^{2} x \leqslant \Lambda m^{-1} x^{*} G_{n}(\gamma) x \quad \forall \gamma \in \Gamma, x \in \mathbb{C}^{n} .
$$

Obviously, it implies (6), as desired.
Define a function $f_{n} \in L_{2}\left([0,1]^{s}\right)$ by its Fourier transform

$$
\hat{f}_{n}\left(\gamma+M^{T} \beta\right):=\sum_{k=1}^{n} x_{k}(\gamma) \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) .
$$

Obviously $f_{n} \in \mathscr{S}_{M}\left(\Phi_{n}\right) \subseteq \mathscr{S}_{M}(\Phi)$. From (6) we have

$$
\begin{aligned}
\left\|f_{n}\right\|^{2} & =\sum_{\gamma \in \Gamma} \sum_{j, k=1}^{n} x_{j}(\gamma)\left[\phi_{j}, \phi_{k}\right](\gamma) \overline{x_{k}(\gamma)} \\
& \leqslant \Lambda m^{-1} \sum_{\gamma \in \Gamma} \sum_{k \in \mathbb{N}}\left|x_{k}(\gamma)\right|^{2} .
\end{aligned}
$$

Applying the same arguments to $f_{N}-f_{n} \in \mathscr{S}_{M}\left(\left\{\phi_{k}\right\}_{k=n+1}^{N}\right) N>n$, we have

$$
\left\|f_{N}-f_{n}\right\|^{2} \leqslant \Lambda m^{-1} \sum_{\gamma \in \Gamma} \sum_{k=n+1}^{N}\left|x_{k}(\gamma)\right|^{2} \rightarrow 0
$$

as $N, n \rightarrow \infty$. On the other hand,

$$
\left\|f_{N}-f_{n}\right\|^{2}=\sum_{\beta \in \mathbb{Z}^{s}} \sum_{\gamma \in \Gamma}\left|\sum_{k=n+1}^{N} x_{k}(\gamma) \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right)\right|^{2} .
$$

This implies the convergence of (3). Thus we know that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges in $L_{2}\left([0,1]^{s}\right)$ to some function, say, f. Obviously, $f \in \mathscr{S}_{M}(\Phi)$ satisfies (4) and (5). The proof is complete.

Remark. For any $\alpha_{0} \in \mathbb{Z}^{s}$, there are $\beta_{0} \in \mathbb{Z}^{s}, \gamma_{0} \in \Gamma$ such that $\alpha_{0}=\gamma_{0}+$ $M^{T} \beta_{0}$. Choose ε_{k} for which $\varepsilon_{k} x_{k}\left(\gamma_{0}\right) \hat{\phi}_{k}\left(\gamma_{0}+M^{T} \beta_{0}\right)=\left|x_{k}\left(\gamma_{0}\right) \hat{\phi}_{k}\left(\gamma_{0}+M^{T} \beta_{0}\right)\right|$, $k \in \mathbb{N}$. Therefore from (5) we obtain that under the conditions of Lemma 1

$$
\sum_{k \in \mathbb{N}}\left|\hat{\phi}_{k}\left(\alpha_{0}\right)\right|^{2} \leqslant \Lambda m^{-1}, \quad \alpha_{0} \in \mathbb{Z}^{s} .
$$

Given $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}}$ and $\gamma \in \Gamma$, we define an operator $G(\gamma)$, at least on the set of finitely supported sequences $x=\left\{x_{k}\right\}$, by

$$
\begin{equation*}
\{G(\gamma) x\}_{k}=\sum_{j \in \mathbb{N}}\left[\phi_{j}, \phi_{k}\right](\gamma) x_{j}, \quad \gamma \in \Gamma, k \in \mathbb{N} . \tag{7}
\end{equation*}
$$

These operators play an important role in characterizing Bessel sequences and frames.

Lemma 2. Suppose that $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}}$ and E_{Φ} is a Bessel sequence with bound Λ. Then the operators $G(\gamma), \gamma \in \Gamma$, defined above can be extended to bounded operators on whole space $\ell_{2}(\mathbb{N})$ with bound Λm^{-1}.

Proof. It suffices to prove that, for any $\gamma \in \Gamma$, the bound of $G(\gamma)$, as an operator defined on finitely supported sequences, is not larger than Am^{-1}.

Let $x=\left\{x_{k}\right\}_{k \in \mathbb{N}} \in \ell_{2}(\mathbb{N})$ satisfy $x_{k}=0$ for $k \geqslant n+1$, where n is some integer. For any $N>n$, define a vector $z=\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots, 0\right)^{T} \in \mathbb{C}^{N}$. It is easily seen that for any $k \leqslant N,\{G(\gamma) x\}_{k}$ is equal to the k th component of $G_{N}(\gamma) z$. Therefore,

$$
\sum_{1 \leqslant k \leqslant N}\left|\{G(\gamma) z\}_{k}\right|^{2}=\left\|G_{N}(\gamma) z\right\|^{2} \leqslant\left(\Lambda m^{-1}\|z\|\right)^{2},
$$

where the last inequality follows from (6). The proof is complete.

Lemma 3. Let $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subseteq L_{2}\left([0,1]^{s}\right)$ and E_{Φ} be a Bessel sequence with bound 1. Suppose that, for any $\gamma \in \Gamma, x(\gamma)=\left\{x_{k}(\gamma)\right\}_{k \in \mathbb{N}}$ is a finitely
supported sequence. Then, for $f \in \mathscr{S}_{M}(\Phi)$ defined in (4) by $x(\gamma), \gamma \in \Gamma$, we have

$$
\begin{equation*}
\left.\|f\|^{2}=\sum_{\gamma \in \Gamma}\langle G(\gamma)) x(\gamma), x(\gamma)\right\rangle \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\varepsilon \in E} \sum_{k \in \mathbb{N}}\left|\left\langle f, T^{\varepsilon} \phi_{k}\right\rangle\right|^{2}=m \sum_{\gamma \in \Gamma}\left\langle(G(\gamma))^{2} x(\gamma), x(\gamma)\right\rangle . \tag{9}
\end{equation*}
$$

Proof. Recall that $\hat{f}\left(\gamma+M^{T} \beta\right)=\sum_{k \in \mathbb{N}} x_{k}(\gamma) \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right)$. Substituting it into (1) and changing the order of summations we get as in the proof of (6)

$$
\|f\|^{2}=\sum_{\gamma \in \Gamma}\langle G(\gamma) x(\gamma), x(\gamma)\rangle .
$$

Note that the order of summations may be changed due to $x(\gamma), \gamma \in \Gamma$, being finitely supported.

Similarly, by substituting the expression of \hat{f} into (2) we have

$$
\sum_{\gamma \in \Gamma} \sum_{j \in \mathbb{N}}\left|\left\langle f, T^{l} \phi_{j}\right\rangle\right|^{2}=m \sum_{\gamma \in \Gamma}\langle G(\gamma) x(\gamma), G(\gamma) x(\gamma)\rangle .
$$

Therefore (9) is true by the fact that $G(\gamma), \gamma \in \Gamma$, are self-adjoint operators. The proof is complete.

Now we are in the position to prove our main result of this section.

Theorem 1. Suppose that $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subseteq L_{2}\left([0,1]^{s}\right)$.
(i) If E_{Φ} is a frame with frame bounds λ and Λ, then the operators $G(\gamma)$ defined by (7) can be extended to whole $\ell_{2}(\mathbb{N})$ and satisfy that for $\gamma \in \Gamma$ and $x \in \ell_{2}(\mathbb{N})$

$$
\begin{equation*}
\lambda m^{-1}\langle G(\gamma) x, x\rangle \leqslant\left\langle(G(\gamma))^{2} x, x\right\rangle \leqslant \Lambda m^{-1}\langle G(\gamma) x, x\rangle . \tag{10}
\end{equation*}
$$

(ii) Conversely, if $G(\gamma), \gamma \in \Gamma$, are meaningful and satisfy (10) for some positive numbers λ and Λ, then E_{Φ} is a frame for $\mathscr{S}_{M}(\Phi)$. The bounds of the frame λ and Λ are the best possible numbers satisfying (10).

Proof. (i) follows immediately from Lemma 3.
For the proof of (ii) we note that all the functions $f \in \mathscr{S}_{M}(\Phi)$ defined in Lemma 1 for finitely supported $x(\gamma) \in \ell_{2}(\mathbb{N}), \gamma \in \Gamma$, are dense in $\mathscr{S}_{M}(\Phi)$. Therefore (8), (9) and (10) imply (ii). The proof is complete.

Since all operators $G(\gamma), \gamma \in \Gamma$, are positive on $\ell_{2}(\mathbb{N})$, we have spectral families $E_{t}(\gamma)$ such that for $n=1,2, \ldots$,

$$
\begin{equation*}
\left\langle(G(\gamma))^{n} x, x\right\rangle=\int_{\sigma(G(\gamma))} t^{n} d\left\|E_{t}(\gamma) x\right\|^{2}, \quad x \in \ell_{2}(\mathbb{N}), \quad \gamma \in \Gamma, \tag{11}
\end{equation*}
$$

where $\sigma(G(\gamma)) \subseteq[0, \infty)$ is the spectrum set of $G(\gamma)$.
Appealing to (11) we can easily see that the inequalities in (10) are equivalent to

$$
\begin{equation*}
\lambda m^{-1} \leqslant \lambda^{+}(G(\gamma)) \leqslant\|G(\gamma)\| \leqslant \Lambda m^{-1} \tag{12}
\end{equation*}
$$

where $\lambda^{+}(A)=\inf \{\lambda: \lambda>0, \lambda \in \sigma(A)\}$ and $\|A\|$ denotes the norm of operator A.

Now we may restate Theorem 1 in terms of spectra.

Theorem 1'. E_{Φ} is a frame with frame bounds λ and Λ if and only if for each $\gamma \in \Gamma$ the operator $G(\gamma)$ satisfies (12) and λ and Λ are the best possible numbers such that (12) holds.

3. FUNDAMENTAL FRAMES FOR $L_{2}\left([0,1]^{s}\right)$

In this section we consider briefly the problem when E_{Φ} is a fundamental frame, i.e., a frame for $L_{2}\left([0,1]^{s}\right)$, where $\Phi=\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \subseteq L_{2}\left([0,1]^{s}\right)$.

For any $\mathrm{f} \in L_{2}\left([0,1]^{s}\right)$, we have by (1) and (2) that

$$
\begin{equation*}
\|f\|^{2}=\sum_{\gamma \in \Gamma}\left\langle\left.\hat{f}\right|_{\gamma},\left.\hat{f}\right|_{\gamma}\right\rangle \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} \mid\left\langle f, T^{\varepsilon} \phi_{k}\right\rangle^{2}=m \sum_{\gamma \in \Gamma}\left\langle\left.\widetilde{G}_{\phi_{k}}(\gamma) \hat{f}\right|_{\gamma},\left.\hat{f}\right|_{\gamma}\right\rangle, \tag{14}
\end{equation*}
$$

where $\left.\hat{f}\right|_{\gamma}=\left\{\hat{f}\left(\gamma+M^{T} \beta\right)\right\}_{\beta \in \mathbb{Z}^{s}} \in l_{2}\left(\mathbb{Z}^{s}\right)$ and $\widetilde{G}_{\phi_{k}}(\gamma)$ is an operator defined, at least on finitely supported sequences, by the matrix $\left(\hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) \times\right.$ $\left.\hat{\phi}_{k}\left(\gamma+M^{T} \beta^{\prime}\right)\right)_{\beta, \beta^{\prime} \in \mathbb{Z}^{s}}$. It is easily seen that $\widetilde{G}_{\phi_{k}}(\gamma)$ is a positive operator on $\ell_{2}\left(\mathbb{Z}^{s}\right)$. Therefore E_{Φ} is a fundamental frame with frame bounds λ and Λ if and only if

$$
\lambda m^{-1} \sum_{\gamma \in \Gamma}\left\langle\left.\hat{f}\right|_{\gamma},\left.\hat{f}\right|_{\gamma}\right\rangle \leqslant \sum_{\gamma \in \Gamma} \sum_{k \in \mathbb{N}}\left\langle\left.\widetilde{G}_{\phi_{k}}(\gamma) \hat{f}\right|_{\gamma},\left.\hat{f}\right|_{\gamma}\right\rangle \leqslant \Lambda m^{-1} \sum_{\gamma \in \Gamma}\left\langle\left.\hat{f}\right|_{\gamma},\left.\hat{f}\right|_{\gamma}\right\rangle
$$

If E_{Φ} is Bessel sequence with bound Λ then, for any $\alpha \in \mathbb{Z}^{s}, \sum_{k \in \mathbb{N}}\left|\hat{\phi}_{k}(\alpha)\right|^{2}$ $\leqslant \Lambda m^{-1}$ by Remark. Consequently, every series

$$
\sum_{k \in \mathbb{N}} \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) \overline{\hat{\phi}_{k}\left(\gamma+M^{T} \beta^{\prime}\right)}, \quad \beta, \beta^{\prime} \in \mathbb{Z}^{s},
$$

converges absolutely. In this case we may define positive operators $\widetilde{G}(\gamma)$, $\gamma \in \Gamma$, at least on finitely supported sequences, by letting

$$
\tilde{G}(\gamma):=\left(\sum_{k \in \mathbb{N}} \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) \overline{\hat{\phi}_{k}\left(\gamma+M^{T} \beta^{\prime}\right)}\right)_{\beta, \beta^{\prime} \in \mathbb{Z}^{s}} .
$$

Recall that $\widetilde{G}(\gamma)$ is the analogue of dual Gramian matrix defined in [3].
By the same arguments as before and appealing to equalities (13) and (14) we have

Theorem 2. E_{Φ} is a fundamental frame with frame bounds λ and Λ if and only if, for each $\gamma \in \Gamma, \widetilde{G}(\gamma)$ is well-defined and satisfies

$$
\begin{equation*}
\lambda m^{-1}\langle x, x\rangle \leqslant\langle\tilde{G}(\gamma) x, x\rangle \leqslant \Lambda m^{-1}\langle x, x\rangle \quad \forall x \in \ell_{2}(\mathbb{N}) . \tag{15}
\end{equation*}
$$

Consequently, E_{Φ} is both a fundamental frame and a tight frame if and only if

$$
\sum_{k \in \mathbb{N}} \hat{\phi}_{k}\left(\gamma+M^{T} \beta\right) \overline{\hat{\phi}_{k}\left(\gamma+M^{T} \beta^{\prime}\right)}=\operatorname{cont} . \delta_{\beta, \beta^{\prime}}, \quad \beta, \beta^{\prime} \in \mathbb{Z}^{s}, \quad \gamma \in \Gamma .
$$

We note that the inequalities in (15) are equivalent to

$$
\begin{equation*}
\lambda m^{-1} \leqslant\left\|\widetilde{G}^{-1}(l)\right\|^{-1} \leqslant\|\widetilde{G}(\gamma)\| \leqslant \Lambda m^{-1} . \tag{16}
\end{equation*}
$$

ACKNOWLEDGMENT

The author thanks the anonymouse referee(s) and Professor A. Ron for their valuable help in improving the presentation of this paper.

REFERENCES

1. D. R. Chen, On splitting trick and wavelet frame packets, SIAM Math. Anal. 31 (2000), 726-739.
2. R. Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-wavelets II: power of two, in "Curves and Surfaces" (P.-J. Laurent, A. Le Mehaute, and L. L. Schumaker, Eds.), pp. 209-246, Academic Press, San Diego, 1991.
3. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_{2}\left(\mathbb{R}^{d}\right)$, Canadian J. Math. 47 (1995), 1051-1094.

[^0]: ${ }^{1}$ Research supported in part by National Natural Science Foundation of China.

