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This note studies Bessel sequences and frames of shift-invariant spaces generated
by a countable set of periodic functions. We give characterizations under which the
set of translations of the countable set is a Bessel sequence or a frame in terms of
spectral decompositions of some self-adjoint operators. � 2000 Academic Press
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1. INTRODUCTION

Let L2([0, 1]s) denote the Hilbert space of all squared integrable func-
tions on [0, 1]s which are Zs-period. For an s_s integer and invertible
matrix M, we define the operators of translation on L2([0, 1]s) by

T :f =f ( } &M&1:), : # Zs.

A shift invariant space S is a closed subspace of L2([0, 1]s) if it satisfies

f # S O T :f # S \f # S, : # Zs.

It is known that the shift invariant spaces play an important role in multi-
resolution analysis and wavelets of L2([0, 1]s).

Let E be a complete set of representatives of coset of Zs�MZs, and let 1
be a complete set of representatives of coset of Zs�M TZs. Clearly,
*E=*1=m :=|det M|. Without loss of generality we assume 0 # E and
0 # 1. Given a set 8=[,k]k # N �L2([0, 1]s), we denote by SM(8) the
closure in L2([0, 1]s) of the space

{ f : f= :
= # E

:
k # N

c=, k T =,k = ,
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where all c=, k but finitely many are zero. We are interested in characterizing
the Bessel sequence property and the frame property of

E8 :=[T =,k : = # E, k # N]

for SM(8).
A sequence [xk]k # N in a Hilbert space X is called a Bessel sequence for

X if there is a constant 4>0 such that, for any x # X,

:
k # N

|(x, xk) X | 2�4 &x&2
X .

The bound of a Bessel sequence is the smallest number 4>0 that can be
used in the above inequality.

We note that any subsequence of a Bessel sequence is also a Bessel
sequence for the closed subspace it spans.

A sequence [xk]k # N is a frame for X if there are constants 4>0 and
*>0 satisfying

* &x&2
X� :

k # N

|(x, xk) X | 2�4 &x&2
X \x # X.

The frame bounds are the largest * and the smallest 4 that can be used in
the above inequalities. A frame with bounds * and 4 is tight if *=4.

For a set 8 of finitely many functions of L2(Rs), we gave in [1] a simple
characterization for the Zs-translations [,( } &:) : : # Zs, , # 8] to be a
frame for the closed space they span. Independently, Ron and Shen [3]
established a more complete characterization for a countable set as well as
a finite set. Moreover, the notion of dual Gramian matrix was introduced
in [3]. A characterization for [,( } &:) : : # Zs, , # 8] being a frame for
L2(Rs) was given in terms of some dual Gramian matrices ([3]). It is the
purpose of this note to find the analog of these results for periodic case. To
this end, we make use of spectral decompositions of self-adjoint operators.

2. CHARACTERIZATIONS OF FRAMES IN L2([0, 1]s)

The bracket product of two functions f, g # L2(Rs) was introduced
in [2]. Similarly, for two functions f and g in L2([0, 1]s), we define the
(periodic) bracket product of f with g by

[ f, g](#)= :
; # Z s

f� (#+MT;) ĝ(#+MT;), # # 1,

205PERIODIC SHIFT-INVARIANT SPACES



where f� is the Fourier transform of f,

f� (:)=|
[0, 1] s

f (x) e&2?: } x dx, : # Zs.

Using the unitarity of matrix

1

- m
(e2?M&1= } #)= # E, # # 1

and Parseval's identity, it is easy to prove the following equalities

& f &2= :
# # 1

[ f, f ](#) (1)

and

:
= # E

|( f, T =g) |2=m :
# # 1

|[ f, g](#)| 2. (2)

Lemma 1. Let E8 be a Bessel sequence for SM(8) with bound 4, where
8=[,k]k # N . Suppose that X(#) :=[xk(#)]k # N # l2(N) for any # # 1. Then
for any # # 1 and ; # Zs the series

:
k # N

xk(#) ,� k(#+M T;) (3)

converges.
Moreover, let y(:) be the sum of the series in (3), where ; # Zs, # # 1 and

: # Zs satisfy :=#+MT;. Then there exists a function f # SM(8) satisfying

f� (:)= y(:), : # Zs, (4)

and

& f &2�4m&1 :
# # 1

:
k # N

|xk(#)|2. (5)

Proof. For any n, let 8n :=[,k]n
k=1 . Being a subsequence of E8 , E8n

is a Bessel sequence for SN(8n) with bound �4. For any n # N and # # 1,
let Gn(#) be the matrix ([, j , ,k](#))n

k, j=1 . Clearly, Gn(#) is a self-adjoint
matrix. We use &Gn(#)& to denote the largest eigenvalue of Gn(#). We claim
that

&Gn(#)&�4m&1 \# # 1, n # N. (6)
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Indeed, the proof of (6) is similar to that of its analogue in nonperiodic
case ([1] and [3]). However, for the reader's convenience, we include the
argument. We note that a function f # SM(8n) if and only if there are m
vectors x(#) :=(x1(#), x2(#), ..., xn(#))T # Cn, # # 1, such that

f� (#+MT;)= :
n

k=1

xk(#) ,� k(#+MT;), # # 1, ; # Zs.

Substituting the above expression into (1) and (2) gives us

& f &2= :
# # 1

:
n

j, k=1

x j (#) Gn(#) xk(#)= :
# # 1

(Gn(#) x(#), x(#))

and

:
n

k=1

:
= # E

|( f, T =,k) |2=m :
n

k=1

:
# # 1 } :

n

j=1

[,j , ,k] x j (#) }
2

=m :
# # 1

( (Gn(#))2 x(#), x(#)) ,

where ( } , } ) is the inner product of two vector in Cn. From these equalities
we see that E8n

is a Bessel sequence with bound 4 is equivalent to

x*(Gn(#))2 x�4m&1x*Gn(#) x \# # 1, x # Cn.

Obviously, it implies (6), as desired.
Define a function fn # L2([0, 1]s) by its Fourier transform

f� n(#+MT;) := :
n

k=1

xk(#) ,� k(#+MT;).

Obviously fn # SM(8n)�SM(8). From (6) we have

& fn&2= :
# # 1

:
n

j, k=1

x j (#)[,j , ,k](#) xk(#)

�4m&1 :
# # 1

:
k # N

|xk(#)|2.

Applying the same arguments to fN& fn # SM([,k]N
k=n+1) N>n, we have

& fN& fn&2�4m&1 :
# # 1

:
N

k=n+1

|xk(#)|2 � 0
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as N, n � �. On the other hand,

& fN& fn&2= :
; # Z s

:
# # 1 } :

N

k=n+1

xk(#) ,� k(#+MT;) }
2

.

This implies the convergence of (3). Thus we know that [ fn]n # N converges
in L2([0, 1]s) to some function, say, f. Obviously, f # SM(8) satisfies (4)
and (5). The proof is complete.

Remark. For any :0 # Zs, there are ;0 # Zs, #0 # 1 such that :0=#0+
MT;0 . Choose =k for which =kxk(#0) ,� k(#0+MT;0)=|xk(#0) ,� k(#0+MT;0)|,
k # N. Therefore from (5) we obtain that under the conditions of Lemma 1

:
k # N

|,� k(:0)|2�4m&1, :0 # Zs.

Given 8=[,k]k # N and # # 1, we define an operator G(#), at least on the
set of finitely supported sequences x=[xk], by

[G(#) x]k= :
j # N

[,j , ,k](#) x j , # # 1, k # N. (7)

These operators play an important role in characterizing Bessel sequences
and frames.

Lemma 2. Suppose that 8=[,k]k # N and E8 is a Bessel sequence with
bound 4. Then the operators G(#), # # 1, defined above can be extended to
bounded operators on whole space l2(N) with bound 4m&1.

Proof. It suffices to prove that, for any # # 1, the bound of G(#), as an
operator defined on finitely supported sequences, is not larger than 4m&1.

Let x=[xk]k # N # l2(N) satisfy xk=0 for k�n+1, where n is some
integer. For any N>n, define a vector z=(x1 , x2 , ..., xn , 0, ..., 0)T # CN. It
is easily seen that for any k�N, [G(#) x]k is equal to the kth component
of GN(#) z. Therefore,

:
1�k�N

|[G(#) z]k | 2=&GN(#) z&2�(4m&1 &z&)2,

where the last inequality follows from (6). The proof is complete.

Lemma 3. Let 8=[,k]k # N �L2([0, 1]s) and E8 be a Bessel sequence
with bound 4. Suppose that, for any # # 1, x(#)=[xk(#)]k # N is a finitely
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supported sequence. Then, for f # SM(8) defined in (4) by x(#), # # 1, we
have

& f &2= :
# # 1

(G(#)) x(#), x(#)) (8)

and

:
= # E

:
k # N

|( f, T =,k) |2=m :
# # 1

( (G(#))2 x(#), x(#)). (9)

Proof. Recall that f� (#+MT;)=�k # N xk(#) ,� k(#+MT;). Substituting
it into (1) and changing the order of summations we get as in the proof
of (6)

& f &2= :
# # 1

(G(#) x(#), x(#)).

Note that the order of summations may be changed due to x(#), # # 1,
being finitely supported.

Similarly, by substituting the expression of f� into (2) we have

:
# # 1

:
j # N

|( f, T l,j) |2=m :
# # 1

(G(#) x(#), G(#) x(#)) .

Therefore (9) is true by the fact that G(#), # # 1, are self-adjoint operators.
The proof is complete.

Now we are in the position to prove our main result of this section.

Theorem 1. Suppose that 8=[,k]k # N �L2([0, 1]s).

(i) If E8 is a frame with frame bounds * and 4, then the operators
G(#) defined by (7) can be extended to whole l2(N) and satisfy that for # # 1
and x # l2(N)

*m&1(G(#) x, x) �( (G(#))2 x, x)�4m&1(G(#) x, x). (10)

(ii) Conversely, if G(#), # # 1, are meaningful and satisfy (10) for some
positive numbers * and 4, then E8 is a frame for SM(8). The bounds of the
frame * and 4 are the best possible numbers satisfying (10).

Proof. (i) follows immediately from Lemma 3.
For the proof of (ii) we note that all the functions f # SM(8) defined in

Lemma 1 for finitely supported x(#) # l2(N), # # 1, are dense in SM(8).
Therefore (8), (9) and (10) imply (ii). The proof is complete.
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Since all operators G(#), # # 1, are positive on l2(N), we have spectral
families Et(#) such that for n=1, 2, ...,

( (G(#))n x, x)=|
_(G(#))

tn d &Et(#) x&2, x # l2(N), # # 1, (11)

where _(G(#))�[0, �) is the spectrum set of G(#).
Appealing to (11) we can easily see that the inequalities in (10) are

equivalent to

*m&1�*+(G(#))�&G(#)&�4m&1, (12)

where *+(A)=inf[* : *>0, * # _(A)] and &A& denotes the norm of
operator A.

Now we may restate Theorem 1 in terms of spectra.

Theorem 1'. E8 is a frame with frame bounds * and 4 if and only if for
each # # 1 the operator G(#) satisfies (12) and * and 4 are the best possible
numbers such that (12) holds.

3. FUNDAMENTAL FRAMES FOR L2([0, 1]s)

In this section we consider briefly the problem when E8 is a fundamental
frame, i.e., a frame for L2([0, 1]s), where 8=[,k]k # N �L2([0, 1]s).

For any f # L2([0, 1]s), we have by (1) and (2) that

& f &2= :
# # 1

( f� | # , f� | #) , (13)

and

:
# # 1

|( f, T =,k) 2=m :
# # 1

(G� ,k
(#) f� |# , f� | #) , (14)

where f� | #=[ f� (#+M T;)]; # Z s # l2(Zs) and G� ,k
(#) is an operator defined, at

least on finitely supported sequences, by the matrix (,� k(#+M T;)_
,� k(#+M T;$));, ;$ # Z s . It is easily seen that G� ,k

(#) is a positive operator on
l2(Zs). Therefore E8 is a fundamental frame with frame bounds * and 4 if
and only if

*m&1 :
# # 1

( f� | # , f� | #)� :
# # 1

:
k # N

(G� ,k
(#) f� | # , f� | #) �4m&1 :

# # 1

( f� | # , f� | #).
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If E8 is Bessel sequence with bound 4 then, for any : # Zs, �k # N |,� k(:)| 2

�4m&1 by Remark. Consequently, every series

:
k # N

,� k(#+MT;) ,� k(#+MT;$), ;, ;$ # Zs,

converges absolutely. In this case we may define positive operators G� (#),
# # 1, at least on finitely supported sequences, by letting

G� (#) :=\ :
k # N

,� k(#+MT;) ,� k(#+MT;$)+;, ;$ # Z s
.

Recall that G� (#) is the analogue of dual Gramian matrix defined in [3].
By the same arguments as before and appealing to equalities (13) and

(14) we have

Theorem 2. E8 is a fundamental frame with frame bounds * and 4 if
and only if, for each # # 1, G� (#) is well-defined and satisfies

*m&1(x, x) �(G� (#) x, x)�4m&1(x, x) \x # l2(N). (15)

Consequently, E8 is both a fundamental frame and a tight frame if and
only if

:
k # N

,� k(#+MT;) ,� k(#+M T;$)=cont. $;, ;$ , ;, ;$ # Zs, # # 1.

We note that the inequalities in (15) are equivalent to

*m&1�&G� &1(l )&&1�&G� (#)&�4m&1. (16)
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